Problem with a solution proposed by Arkady Alt, San Jose, California, USA.

Let $D := \{(x,y) \mid x,y \in \mathbb{R}_+, x \neq y \text{ and } x^y = y^x\}$. (Obvious that $x \neq 1$ and $y \neq 1$). Find $\sup_{(x,y)\in D} \left(\frac{x^{-1} + y^{-1}}{2}\right)^{-1}$

Solution.

Since *D* is symmetrical then $D = D_{\leq} \cup D_{>}$, where $D_{\leq} := \{(x,y) \mid x, y \in D \text{ and } x < y\}$ and $D_{>} := \{(x,y) \mid x,y \in D \text{ and } x > y\}.$ Let $f(x) := x^{\frac{1}{x}}, x > 0$. Since $f'(x) = \frac{f(x)}{x^2}(1 - \ln x)$ then f(x) strictly increasing on (0, e] and strictly decreasing on $[0, \infty)$ with $\max_{y \ge 0} f(x) = f(e) = e^{\frac{1}{e}}$. Therefore, noting that $x^y = y^x \Leftrightarrow x^{\frac{1}{x}} = y^{\frac{1}{y}} \Leftrightarrow f(x) = f(y)$, we can conclude that $(x,y) \in D_{<} \Rightarrow x < e < y$, and $(x,y) \in D_{>} \Rightarrow y < e < x$. (otherwise if x, yboth belong to (0,e) or (e,∞) then, due to monotonicity f(x) equality f(x) = f(y)yields x = y, that is the contradiction. And, also, if x = e then $y > e \Rightarrow f(e) = f(y) < f(e)$. Also note that if $(x, y) \in D_{\leq}$ then x > 1. Indeed, since $x^y = y^x \Leftrightarrow$ $y = x \log_x y$, then supposition x < 1 implies $0 < \frac{y}{x} = \log_x y < 0$, i.e. contradiction. Hence $(x,y) \in D_{\leq} \Rightarrow x \in (1,e), y \in (e,\infty)$ and then $(x, y) \in D \Rightarrow x, y \in (1, e) \cup (e, \infty).$ Let $t := \log_y y - 1$. Then $\log_y y = t + 1 \iff y = x^{t+1}$ and $y = x \log_y y \iff y$ y = x(t+1).Hence $y = x^{t+1}$, and, therefore, $x^{t+1} = x(t+1) \iff x^t = t+1 \iff$ $x = (t+1)^{\frac{1}{t}} \Rightarrow y = (t+1)^{1+\frac{1}{t}}$, where t > 0 (since 1 < x < y) Thus, $D_{<} = \left\{ \left((t+1)^{\frac{1}{t}}, (t+1)^{1+\frac{1}{t}} \right) \mid t \in (0,\infty) \right\}$ is set of all non-trivial solution of equation $x^{y} = y^{x}$, satisfied x < y. Since $t = \log_y y - 1$ then $(x, y) \in D_> \Rightarrow 1 < y < e < x \Rightarrow$ $1 < y < x \Leftrightarrow \log_{x} 1 - 1 < \log_{x} y - 1 < \log_{y} x - 1 \Leftrightarrow -1 < t < 0.$ Therefore, $D_{>} = \left\{ \left((t+1)^{\frac{1}{t}}, (t+1)^{1+\frac{1}{t}} \right) \mid t \in (-1,0) \right\}$ and $D = \left\{ \left((t+1)^{\frac{1}{t}}, (t+1)^{1+\frac{1}{t}} \right) \mid t \in (-1,0) \cup (0,\infty) \right\}.$ Note that $\lim_{t \to 0} x = \lim_{t \to 0} (t+1)^{\frac{1}{t}} = e$ and $\lim_{t \to 0} y = \lim_{t \to 0} (t+1)^{1+\frac{1}{t}} = e$. Since x < e < y then x and y approaches to e from left and right respectively. We also have $\lim_{t\to\infty} x = \lim_{t\to\infty} (t+1)^{\frac{1}{t}} = 1$ and $\lim_{t\to\infty} y = \lim_{t\to\infty} (t+1)^{1+\frac{1}{t}} = \infty$. Remark 1. Correspondence $t \mapsto x(t) = (t+1)^{\frac{1}{t}} : (0,\infty) \to (1,e)$ is one-to-one

Correspondence $t \mapsto x(t) = (t+1)^{t}$: $(0,\infty) \to (1,e)$ is one-to-one correspondence, moreover x(t) is strictly decreasing on $(0,\infty)$. Indeed, since $(\ln x(t))' = \frac{1}{t(t+1)} - \frac{\ln(1+t)}{t^2} = \frac{1}{t^2} \left(\frac{t}{t+1} - \ln(1+t)\right)$

suffice to prove that $\frac{t}{t+1} - \ln(1+t)$ is negative for t > 0. But it is so, because $\left(\frac{t}{t+1} - \ln(1+t)\right)' = \frac{1}{(t+1)^2} - \frac{1}{1+t} = \frac{-t}{(t+1)^2}$ and then $\frac{t}{t+1} - \ln(1+t) < \frac{0}{0+1} - \ln(1+0) = 0.$ Thus equation $x = (t+1)^{\frac{1}{t}}$ for any $x \in (1,e)$ always have unique solution $t(x) \in (0,\infty)$ and then $y(x) := (t(x) + 1)^{1 + \frac{1}{t(x)}}$ is function of *x*, such that $D_{<} = \{(x, y(x)) \mid x \in (1, e)\}$. Let $H(x,y) := \left(\frac{x^{-1} + y^{-1}}{2}\right)^{-1}$. For $(x,y) \in D_{<}$ we have $H(x,y) = \frac{2xy}{x+y} = \frac{2xy}{(t+2)x} = \frac{2y}{t+2} =$ $\frac{2(t+1)^{1+\frac{1}{t}}}{1+2} = e^{h(t)}$, where $h(t) := \ln \frac{2(t+1)^{1+\frac{1}{t}}}{t+2} = \ln \frac{2t+2}{t+2} + \frac{\ln(t+1)}{t}, t \in (0,\infty).$ Then $\sup_{(x,y)\in D} H(x,y) = \sup_{(x,y)\in D_{<}} H(x,y) = \sup_{t\in(0,\infty)} e^{h(t)}$. Note that $h'(t) = -\frac{1}{t^2} \ln(t+1) + \frac{2}{t(t+2)} = \frac{1}{t^2} \left(\frac{2t}{t+2} - \ln(t+1)\right) < 0$. Indeed, since $\left(\frac{2t}{t+2} - \ln(t+1)\right)' = \frac{4}{(t+2)^2} - \frac{1}{t+1} = -\frac{t^2}{(t+2)^2}$ then $\frac{2t}{t+2} - \ln(t+1)$ is decreasing on $(0,\infty)$ and, therefore, $\frac{2t}{t+2} - \ln(t+1) < \lim_{t \to 0} \left(\frac{2t}{t+2} - \ln(t+1) \right) = 0.$ Hence, h(t) is decreasing on $(0,\infty)$ and, therefore, $h(t) < \lim_{t \to 0} h(t) = \lim_{t \to 0} \left(\ln \frac{2t+2}{t+2} + \frac{\ln(t+1)}{t} \right) = \lim_{t \to 0} \ln \frac{2t+2}{t+2} + \lim_{t \to 0} \frac{\ln(t+1)}{t} =$ 0 + 1 = 1 yields sup h(t) = 1Thus, $\sup_{(x,y)\in D} H(x,y) = e$ or, in form of inequality $\left(\frac{x^{-1}+y^{-1}}{2}\right)^{-1} < e$, where $x, y > 0, x \neq y$ and $x^y = y^x$.